Volume 10, Issue 3 (9-2025)                   IJREE 2025, 10(3): 48-68 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini N, Ebadi S. (2025). Cross-Cultural Perspectives on ChatGPT Acceptance: A Mixed-Methods Study Comparing Iranian EFL Learners and International Students in the UK. IJREE. 10(3),
URL: http://ijreeonline.com/article-1-1042-en.html
Department of English, Faculty of Humanities, Razi University, Kermanshah, Iran
Abstract:   (426 Views)
This study investigated the acceptance of ChatGPT as a language learning tool among 536 learners, including international English language learners in the UK (N = 414) and Iranian EFL learners (N = 122), highlighting cross-cultural differences in technology adoption. Using a mixed-methods approach guided by the Technology Acceptance Model (TAM), which also incorporated a deeper exploration of cultural and contextual factors, this study examined perceived ease of use, perceived usefulness, attitudes, behavioral intention, actual usage, perceived enjoyment, facilitating conditions, and technological complexity. Quantitative surveys revealed that Iranian EFL learners exhibit higher engagement and acceptance of ChatGPT, potentially driven by more favorable facilitating conditions and intrinsic motivation observed in that group. Qualitative interviews further emphasized cultural and educational influences, with Iranian EFL learners valuing accessibility and consistent feedback, while UK international learners stressed creative applications and contextual accuracy. The findings underscore the importance of considering the context-dependent nature of technology acceptance and adapting AI-powered tools to diverse learner needs and specific educational environments, rather than assuming universal benefits. These results offer practical implications for educators and developers aiming to integrate such technologies into language education.


 
Full-Text [PDF 659 kb]   (40 Downloads)    
Type of Study: Research | Subject: Special

References
1. Chen, D., Liu, W., & Liu, X. (2024). What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. [DOI:10.1016/j.actpsy.2024.104442]
2. Hwang, M., Lee, E., & Lee, H. K. (2025). Exploring EFL Learners' Acceptance of ChatGPT: Application of the Extended Technology Acceptance Model. English Teaching, 80(1), 45-69. [DOI:10.15858/engtea.80.1.202503.45]
3. Ma, M. (2025). Exploring the acceptance of generative artificial intelligence for language learning among EFL postgraduate students: An extended TAM approach. International Journal of Applied Linguistics, 35(1), 91-108. [DOI:10.1111/ijal.12603]
4. Abdaljaleel, M. (2023). Factors influencing attitudes of university students towards ChatGPT and its usage: a multi-national study validating the tame-ChatGPT survey instrument. [DOI:10.20944/preprints202309.1541.v1]
5. Abuhassna, H., Yahaya, N., Zakaria, M., Zaid, N., Samah, N., Awae, F., … & Alsharif, A. (2023). Trends on using the technology acceptance model (TAM) for online learning: a bibliometric and content analysis. International Journal of Information and Education Technology, 13(1), 131-142. [DOI:10.18178/ijiet.2023.13.1.1788]
6. AbuSahyon, A. (2023). Investigating the impact of ai- driven chatbots on the acquisition of English as a foreign language among Saudi undergraduate students. International Journal of Membrane Science and Technology, 10(2), 3075-3088. [DOI:10.15379/ijmst.v10i2.3049]
7. AlDakhil, M. and Alfadda, H. (2021). EFL learners' perceptions regarding the use of Busuu application in language learning: evaluating the technology acceptance model (tam). English Language Teaching, 15(1), 1. [DOI:10.5539/elt.v15n1p1]
8. Al-kfairy, M. (2024). Factors impacting the adoption and acceptance of ChatGPT in educational settings: a narrative review of empirical studies. Applied System Innovation, 7(6), 110. [DOI:10.3390/asi7060110]
9. Ali, J. K. M., Shamsan, M. A. A., Hezam, T. A., & Mohammed, A. A. (2023). Impact of ChatGPT on learning motivation: Teachers and students' voices. Journal of English Studies in Arabia Felix, 2(1), 41-49. [DOI:10.56540/jesaf.v2i1.51]
10. Alshare, K., Mesak, H., Grandón, E., & Badri, M. (2011). Examining the moderating role of national culture on an extended technology acceptance model. Journal of Global Information Technology Management, 14(3), 27-53. https://doi.org/10.1080/1097198X.2011.10856542 [DOI:10.1080/1097198x.2011.10856542]
11. Alsheddi, A., Sharma, D., & Talukder, M. (2020). Impact of users' socio-cultural and religious orientation on government resource planning (grp) systems usage in Saudi Arabia. Ieee Access, 8, 122722-122735. https://doi.org/10.1109/ACCESS.2020.3006866 [DOI:10.1109/access.2020.3006866]
12. Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in human behavior, 114, 106548. [DOI:10.1016/j.chb.2020.106548]
13. Amin, M. (2023). Ai and chat gpt in language teaching: enhancing EFL classroom support and transforming assessment techniques. International Journal of Higher Education Pedagogies, 4(4), 1-15. [DOI:10.33422/ijhep.v4i4.554]
14. Athanassopoulos, S. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818-824. https://doi.org/10.25082/AMLER.2023.02.009 [DOI:10.25082/amler.2023.02.009]
15. Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Using chatbots as AI conversational partners in language learning. Applied Sciences, 12(17), 8427. [DOI:10.3390/app12178427]
16. Bernabei, M. (2023). Students' use of large language models in engineering education: a case study on technology acceptance, perceptions, efficacy, and detection chances. Computers and Education Artificial Intelligence, 5, 100172. [DOI:10.1016/j.caeai.2023.100172]
17. Betal, A. (2023). Enhancing second language acquisition through artificial intelligence (ai): current insights and future directions. Journal for Research Scholars and Professionals of English Language Teaching, 7(39). [DOI:10.54850/jrspelt.7.39.003]
18. Bodani, N., Lal, A., Maqsood, A., Altamash, S., Ahmed, N., & Heboyan, A. (2023). Knowledge, attitude, and practices of general population toward utilizing ChatGPT: A cross-sectional study. SAGE Open, 13(4), 21582440231211079. [DOI:10.1177/21582440231211079]
19. Chatterjee, S., Chaudhuri, R., Vrontis, D., Thrassou, A., & Ghosh, S. K. (2021). Adoption of artificial intelligence-integrated CRM systems in agile organizations in India. Technological Forecasting and Social Change, 168, 120783. [DOI:10.1016/j.techfore.2021.120783]
20. Chen, D. (2024). What drives college students to use ai for l2 learning? modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. [DOI:10.1016/j.actpsy.2024.104442]
21. Chen, H. L., Vicki Widarso, G., & Sutrisno, H. (2020). A chatbot for learning Chinese: Learning achievement and technology acceptance. Journal of Educational Computing Research, 58(6), 1161-1189. [DOI:10.1177/0735633120929622]
22. Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2021). Teachers' attitudes towards chatbots in education: a technology acceptance model approach considering the effect of social language, bot proactiveness, and users' characteristics. Educational Studies, 49(2), 295-313. [DOI:10.1080/03055698.2020.1850426]
23. Copeland, C., & Franzese, J. (2021). Using the Technology Acceptance Model to Understand Attitudes about a Virtual Learning Environment for EFL Writing. Korean Journal of General Education, 15(5), 215-227. [DOI:10.46392/kjge.2021.15.5.215]
24. Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in education and teaching international, 61(2), 228-239. [DOI:10.1080/14703297.2023.2190148]
25. Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information
26. Dennehy, D., Schmarzo, B., & Sidaoui, M. (2022). Organizing for AI-powered innovation through design: the case of Hitachi Vantara. International Journal of Technology Management, 88(2-4), 312-334. [DOI:10.1504/IJTM.2022.121507]
27. Du, Y., & Gao, H. (2022). Determinants affecting teachers' adoption of AI-based applications in EFL context: An analysis of analytic hierarchy process. Education and Information Technologies, 27(7), 9357-9384. [DOI:10.1007/s10639-022-11001-y]
28. Fan, P. (2023). The application of ChatGPT in translation teaching: changes, challenges, and responses. International Journal of Education and Humanities, 11(2), 49-52. [DOI:10.54097/ijeh.v11i2.13530]
29. Farr, C. (2024). Unmasking ChatGPT: The Challenges of Using Artificial Intelligence for Learning Vocabulary in English as an Additional Language (Doctoral dissertation).
30. Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57-63. http://journals.sfu.ca/jalt/index.php/jalt/index [DOI:10.37074/jalt.2023.6.1.22]
31. Fryer, L. K., Nakao, K., & Thompson, A. (2019). Chatbot learning partners: Connecting learning experiences, interest and competence. Computers in human Behavior, 93, 279-289. [DOI:10.1016/j.chb.2018.12.023]
32. Granić, A. and Marangunić, N. (2019). Technology acceptance model in educational context: a systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593. [DOI:10.1111/bjet.12864]
33. Grassini, S., Aasen, M. L., & Møgelvang, A. (2024). Understanding University Students' Acceptance of ChatGPT: Insights from the UTAUT2 Model. Applied Artificial Intelligence, 38(1), 2371168. [DOI:10.1080/08839514.2024.2371168]
34. Haristiani, N. (2019, November). Artificial Intelligence (AI) chatbot as language learning medium: An inquiry. In Journal of Physics: Conference Series (Vol. 1387, No. 1, p. 012020). IOP Publishing. [DOI:10.1088/1742-6596/1387/1/012020]
35. Hofstede, G. (2011). Dimensionalizing Cultures: The Hofstede Model in Context. Online Readings in Psychology and Culture, 2(1). [DOI:10.9707/2307-0919.1014]
36. Hwang, M., Lee, E., & Lee, H. K. (2025). Exploring EFL learners' acceptance of ChatGPT: Application of the extended technology acceptance model. English Teaching, 80(1), 45-69. [DOI:10.15858/engtea.80.1.202503.45]
37. Jacobs-Basadien, M., Pather, S., & Petersen, F. (2022). The role of culture in the adoption of mobile applications for the self-management of diabetes in low resourced urban communities. Universal Access in the Information Society, 23(2), 743-763. [DOI:10.1007/s10209-022-00951-2]
38. Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 1-12. [DOI:10.1016/j.tbench.2023.100115]
39. Kanont, K. (2024). Generative-ai, a learning assistant? factors influencing higher-ed students' technology acceptance. The Electronic Journal of E-Learning, 22(6), 18-33. [DOI:10.34190/ejel.22.6.3196]
40. Khanchel, H. (2023). Factors affecting social network use by students in Tunisia. Human Systems Management, 42(2), 131-148. https://doi.org/10.3233/HSM-220017 [DOI:10.3233/hsm-220017]
41. Kim, S., Shim, J., & Shim, J. (2023). A Study on the Utilization of OpenAI ChatGPT as a Second Language Learning Tool. Journal of Multimedia Information System, 10(1), 79-88. [DOI:10.33851/JMIS.2023.10.1.79]
42. Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. RELC Journal, 54 (2). 1-14. [DOI:10.1177/00336882231162868]
43. Koraishi, O. (2023). Teaching English in the age of AI: Embracing ChatGPT to optimize EFL materials and assessment. Language Education and Technology, 3(1). 55-72. https://langedutech.com/letjournal/index.php/let/article/view/48/37
44. Kostka, I., & Toncelli, R. (2023). Exploring applications of ChatGPT to English language teaching: Opportunities, challenges, and recommendations. The Electronic Journal for English as a Second Language, 27(3). 1-19. https://www.tesl-ej.org/pdf/ej107/int.pdf [DOI:10.55593/ej.27107int]
45. Lai, C. (2023). Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: an extension of the technology acceptance model. Computers and Education Artificial Intelligence, 5, 100178. [DOI:10.1016/j.caeai.2023.100178]
46. Lee, S., Trimi, S., & Kim, C. (2013). The impact of cultural differences on technology adoption. Journal of World Business, 48(1), 20-29. [DOI:10.1016/j.jwb.2012.06.003]
47. Li, J. (2024). Exploring the potential of artificial intelligence to enhance the writing of English academic papers by non-native English-speaking medical students - the educational application of ChatGPT. BMC Medical Education, 24(1). [DOI:10.1186/s12909-024-05738-y]
48. Li, K. (2023). Determinants of college students' actual use of ai-based systems: an extension of the technology acceptance model. Sustainability, 15(6), 5221. [DOI:10.3390/su15065221]
49. Li, X., Li, B., & Cho, S. J. (2023). Empowering Chinese Language Learners from Low-Income Families to Improve Their Chinese Writing with ChatGPT's Assistance Afterschool. Languages, 8(4), 238-254. [DOI:10.3390/languages8040238]
50. Lin, M. P. C., & Chang, D. (2020). Enhancing post-secondary writers' writing skills with a chatbot. Journal of Educational Technology & Society, 23(1), 78-92.
51. Liu, G., & Ma, C. (2023). Measuring EFL learners' use of ChatGPT in informal digital learning of English based on the technology acceptance model. Innovation in Language Learning and Teaching, 1-14. [DOI:10.1080/17501229.2023.2240316]
52. Ma, M. (2024). Exploring the acceptance of generative artificial intelligence for language learning among efl postgraduate students: an extended tam approach. International Journal of Applied Linguistics. [DOI:10.1111/ijal.12603]
53. Ma, J., Wang, P., Li, B., Wang, T., Pang, X. S., & Wang, D. (2024). Exploring User Adoption of ChatGPT: A Technology Acceptance Model Perspective. International Journal of Human-Computer Interaction, 1-15. [DOI:10.1080/10447318.2024.2314358]
54. Nistor, N., Lerche, T., Weinberger, A., Ceobanu, C., & Heymann, O. (2012). Towards the integration of culture into the unified theory of acceptance and use of technology. British Journal of Educational Technology, 45(1), 36-55. [DOI:10.1111/j.1467-8535.2012.01383.x]
55. Nistor, N., Stanciu, D., Lerche, T., & Kiel, E. (2019). "I am fine with any technology, as long as it doesn't make trouble, so that I can concentrate on my study": A case study of university students' attitude strength related to educational technology acceptance. British Journal of Educational Technology, 50(5), 2557-2571. [DOI:10.1111/bjet.12832]
56. Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199-3226. [DOI:10.1108/IJCHM-04-2020-0259]
57. Porto, N., Huang, Y., & Xiao, J. J. (2019). Credit card adoption and usage in china: urban-rural comparisons. The Singapore Economic Review, 64(01), 41-56. [DOI:10.1142/S021759081743010X]
58. Prasetya, R. (2023). Chatgpt as a tool for language development: investigating its impact on proficiency and self-evaluation accuracy in Indonesian higher education. Veles Voice of English Language Education Society, 7(3), 402-415. [DOI:10.29408/veles.v7i3.19303]
59. Punar Özçelik, N., & Yangın Ekşi, G. (2024). Cultivating writing skills: the role of ChatGPT as a learning assistant-a case study. Smart Learning Environments, 11(1), 10 [DOI:10.1186/s40561-024-00296-8]
60. Ragheb, M. A., Tantawi, P., Farouk, N., & Hatata, A. (2022). Investigating the acceptance of applying chat-bot (Artificial intelligence) technology among higher education students in Egypt. International Journal of Higher Education Management, 8(2). 1-13. [DOI:10.24052/IJHEM/V08N02/ART-1]
61. Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 57-83. [DOI:10.3390/app13095783]
62. Rusmiyanto, R., Huriati, N., Fitriani, N., Tyas, N., Rofi'i, A., & Sari, M. (2023). The role of artificial intelligence (ai) in developing English language learner's communication skills. Journal on Education, 6(1), 750-757. [DOI:10.31004/joe.v6i1.2990]
63. Salloum, S. A., Al-Emran, M., Shaalan, K., & Tarhini, A. (2019). Factors affecting the E-learning acceptance: A case study from UAE. Education and Information Technologies, 24(1), 509-530. https:// doi. org/ 10. 1007/ s10639- 018- 9786-3. [DOI:10.1007/s10639-018-9786-3]
64. Shahzad, M. (2024). Factors affecting generative artificial intelligence, such as ChatGPT, use in higher education: an application of technology acceptance model. British Educational Research Journal. [DOI:10.1002/berj.4084]
65. Shiri, A. (2023). ChatGPT and academic integrity. Information Matters, 3(2). 1-11. https://informationmatters.org/2023/02/chatgpt-and-academic-integrity/ [DOI:10.2139/ssrn.4360052]
66. Sindermann, C., Yang, H., Elhai, J., Yang, S., Ling, Q., Mei, L., … & Montag, C. (2022). Acceptance and fear of artificial intelligence: associations with personality in a German and a Chinese sample. Discover Psychology, 2(1). [DOI:10.1007/s44202-022-00020-y]
67. Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students' acceptance and use of technology. Interactive Learning Environments, 1-14. [DOI:10.1080/10494820.2023.2209881]
68. Sulistiyo, U., Arif, T., Handayani, R., Ubaidillah, M., & Wiryotinoyo, M. (2022). Determinants of technology acceptance model (tam) towards ICT use for English language learning. Journal of Language and Education, 8(2), 17-30. [DOI:10.17323/jle.2022.12467]
69. Tandon, A., Sharma, H., & Aggarwal, A. G. (2019). Studying the moderating effect of a respondent's locality in M-commerce adoption intention. Ingeniería Solidaria, 15(3), 1-23. [DOI:10.16925/2357-6014.2019.03.07]
70. Teng, M. F. (2024). "ChatGPT is the companion, not enemies": EFL learners' perceptions and experiences in using ChatGPT for feedback in writing. Computers and Education: Artificial Intelligence, 100270. [DOI:10.1016/j.caeai.2024.100270]
71. Teng, M., Singla, R., Yau, O., Lamoureux, D., Gupta, A., Hu, Z., … & Field, T. (2022). Health care students' perspectives on artificial intelligence: countrywide survey in Canada. Jmir Medical Education, 8(1), e33390. [DOI:10.2196/33390]
72. Teo, T. (Ed.). (2011). Technology acceptance in education. Springer Science & Business Media. [DOI:10.1007/978-94-6091-487-4]
73. Vo, T. (2024). Generative artificial intelligence and ChatGPT in language learning: EFL students' perceptions of technology acceptance. Journal of University Teaching and Learning Practice, 21(06). [DOI:10.53761/fr1rkj58]
74. Wang, H., Sun, Q., Gu, L., Lai, K., & He, L. (2022). Diversity in people's reluctance to use medical artificial intelligence: identifying subgroups through latent profile analysis. Frontiers in Artificial Intelligence, 5. [DOI:10.3389/frai.2022.1006173]
75. Wang, T., Lund, B., Marengo, A., Pagano, A., Mannuru, N., Teel, Z., … & Pange, J. (2023). Exploring the potential impact of artificial intelligence (ai) on international students in higher education: generative ai, chatbots, analytics, and international student success. Applied Sciences, 13(11), 6716. [DOI:10.3390/app13116716]
76. Wei, L. (2023). Artificial intelligence in language instruction: impact on English learning achievement, l2 motivation, and self-regulated learning. Frontiers in Psychology, 14. [DOI:10.3389/fpsyg.2023.1261955]
77. Widianingtyas, N. (2023). ChatGPT in language education: perceptions of teachers - a beneficial tool or potential threat?. Veles Voice of English Language Education Society, 7(2), 279-290. [DOI:10.29408/veles.v7i2.20326]
78. Wong, L. (2024). From hype to insight: exploring ChatGPT's early footprint in education via altmetrics and bibliometrics. Journal of Computer Assisted Learning, 40(4), 1428-1446. [DOI:10.1111/jcal.12962]
79. Xiao, Y., & Zhi, Y. (2023). An exploratory study of EFL learners' use of ChatGPT for language learning tasks: Experience and perceptions. Languages, 8(3), 212. [DOI:10.3390/languages8030212]
80. Yuan, L. (2022). Communicative Competence Fostered in a Nested EFL Learning Ecology: Technology-Enhanced Learning in the Chinese Context. Theory and Practice in Language Studies, 12(11), 2307-2315. [DOI:10.17507/tpls.1211.10]
81. Zhang, B., Zhu, Y., Deng, J., Zheng, W., Liu, Y., Wang, C., & Zeng, R. (2023). "I am here to assist your tourism": Predicting continuance intention to use AI-based chatbots for tourism. Does gender really matter? International Journal of Human-Computer Interaction, 39(9), 1887-1903. [DOI:10.1080/10447318.2022.2124345]
82. Zou, B. (2023). Exploring students' acceptance of an artificial intelligence speech evaluation program for EFL speaking practice: an application of the integrated model of technology acceptance. Computer Assisted Language Learning, 1-26. [DOI:10.1080/09588221.2023.2278608]
83. Zou, B., Lyu, Q., Han, Y., Li, Z., & Zhang, W. (2023). Exploring students' acceptance of an artificial intelligence speech evaluation program for EFL speaking practice: an application of the Integrated Model of Technology Acceptance. Computer Assisted Language Learning, 1-26. [DOI:10.1080/09588221.2023.2278608]
84. Zou, M., & Huang, L. (2023). The impact of ChatGPT on L2 writing and expected responses: Voice from doctoral students. Education and Information Technologies, 1-19. [DOI:10.1007/s10639-023-12397-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC 4.0)